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1. 

Recently, the method of differential quadrature (DQ) proposed by Bellman et al. [1] has
been increasingly applied to solve many engineering problems such as fluid mechanics
problems [2–4] and structural problems [5–7]. The key procedure in DQ is the
determination of weighting coefficients for any order derivative discretization. Based on
the analysis of high order polynomial approximation in a polynomial linear vector space,
Shu [2] generalizes all the ways of computing the weighting coefficients in DQ and
computes the weighting coefficients of the first order derivative by a simple algebraic
formulation without any restriction on choice of grid points, and the weighting coefficients
of the second and higher order derivatives by a recurrence relationship.

On the other hand, as indicated in reference [8], for some problems, especially for those
with periodic behaviors, the polynomial approximation is not the best fitting. In contrast,
the Fourier series expansion could be the best approximation. Following this idea, Striz
et al. [8] choose the harmonic functions as the test functions in the DQ application. Using
the same manner as in DQ, they then obtained a set of algebraic equations for
determination of weighting coefficients. However, solving this algebraic equation system
encounters the same difficulty as in the original DQ. In this paper, by following the Fourier
series expansion and the same concept of generalized differential quadrature (GDQ) [2],
one will demonstrate that the weighting coefficients can also be calculated by explicit
formulations. The developed method is validated by its application to the free vibration
analysis of rectangular plates which have been widely studied by many researchers [9–12].

2.    ()

For simplicity, the one dimensional problem is chosen to demonstrate the HDQ method.
Following the idea of DQ, any derivative at a grid point is approximated by a linear
summation of all the functional values in the whole computational domain. For example,
the first and second order derivatives of f(x) at a point xi can be approximated by

fx (xi )= s
N

j=1

aij f(xj ), for i=1, 2, . . . , N, (1)

fxx (xi )= s
N

j=1

bij f(xj ), for i=1, 2, . . . , N, (2)

where N is the number of grid points, and aij , bij are the weighting coefficients. To determine
aij and bij , one follows the same procedure as in GDQ.
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It is supposed that a function f(x) in the interval 0E xE 1 is approximated by a Fourier
series expansion in the form

f(x)= c0 + s
N/2

k=1

(ck cos kpx+ dk sin kpx). (3)

It is easy to show that f(x) in equation (3) constitutes a (N+1) dimensional linear vector
space with respect to the operation of addition and multiplication. From the concept of
linear independence, the bases of a linear vector space can be considered as a linearly
independent subset which spans the entire space. Here if rk (x), k=0, 1, . . . , N, are the
base functions, any function in the space can be expressed as a linear combination of rk (x),
k=0, 1, . . . , N. And if all the base functions satisfy a linear constrained relationship such
as equation (1) or (2), so does any function in the space. In the linear vector space, there
may exist several sets of base functions. Each set of base functions can be expressed
uniquely by another set of base functions. It is obviously observed from equation (3) that
one set of base functions is 1, sin px, cos px, sin 2px, . . . , sin (Npx/2), cos (Npx/2) which
has been used in reference 8. Here for generality, two sets of base functions will be used
in HDQ. Firstly, the Lagrange interpolated trigonometric polynomials are taken as one
set of base functions,

rk (x)=
sin

x− x0

2
p · · · sin

x− xk−1

2
p sin

x− xk+1

2
p · · · sin

x− xN

2
p

sin
xk − x0

2
p · · · sin

xk − xk−1

2
p sin

xk − xk+1

2
p · · · sin

xk − xN

2
p

,

k=0, 1, . . . , N. (4)

Setting

M(x)= t
N

k=0

sin
x− xk

2
p=N(x, xk ) sin

x− xk

2
p, (5)

where

N(xi , xi )= t
N

k=0,k$ i

sin
xi − xk

2
p=P(xi ), (6)

N(xi , xj )=N(xi , xi )dij , dij is the Kronecker operator,

equation (4) can then be reduced to

rk (x)=N(x, xk )/P(xk ). (7)

Using the same fashion as in GDQ, one lets all the base functions given by equation
(7) satisfy two linear constrained relations (1) and (2). This results in the following two
formulations

aij =N(1)(xi , xj )/P(xj ), bij =N(2)(xi , xj )/P(xj ), (8, 9)

where N(1)(x, xk ) and N(2)(x, xk ) are the first and second order derivatives of the function
N(x, xk ). It is observed from equations (8) and (9) that the computation of aij and bij is
equivalent to the evaluation of N(1)(xi , xj ) and N(2)(xi , xj ) since P(xj ) can be easily
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calcualted by equation (6). To evaluate N(1)(xi , xj ) and N(2)(xi , xj ), equation (5) is
differentiated successively to obtain

M(1)(x)=N(1)(x, xk ) sin
x− xk

2
p+

p

2
N(x, xk ) cos

x− xk

2
p, (10)

M(2)(x)=N(2)(x, xk ) sin
x− xk

2
p+ pN(1)(x, xk ) cos

x− xk

2
p−

p2

4
N(x, xk ) sin

x− xk

2
p,

(11)

M(3)(x)=N(3)(x, xk ) sin
x− xk

2
p+

3p

2
N(2)(x, xk ) cos

x− xk

2
p

−
3p2

4
N(1)(x, xk ) sin

x− xk

2
p−

p3

8
N(x, xk ) cos

x− xk

2
p. (12)

From the above equations, one can obtain the following results

N(1)(xi , xj )= pP(xi )>2 sin
xi − xj

2
p, when j$ i, (13)

N(1)(xi , xi )=M(2)(xi )/p, (14)

N(2)(xi , xj )=M(2)(xi )− pN(1)(xi , xj ) cos
xi − xj

2
p>sin

xi − xj

2
p, when j$ i, (15)

N(2)(xi , xi )=
2
3p $M(3)(xi )+

p3

8
N(xi , xi )%. (16)

Substituting equations (13), (14) into equation (8) one obtains

aij =
p

2
P(xi )>P(xj ) sin

xi − xj

2
p, when j$ i, aii =

M(2)(xi )
pP(xi )

. (17, 18)

Similarly, by substituting equations (15), (16) into equation (9) and using equations (17),
(18),

bij = aij $2aii − p ctg
xi − xj

2
p%, when j$ i, bii =

2
3p $M(3)(xi )

P(xi )
+

p3

8 %. (19, 20)

From equations (17), (19), aij , bij (i$ j) can be easily computed. However, the calculation
of aii (equation (18)) and bii (equation (20)) involves the computation of M(2)(xi ) and
M(3)(xi ) which are not easy to compute. This difficulty can be removed by the following
analysis. According to the analysis of a linear vector space, one set of base functions can
be expressed uniquely by a linear sum of another set of base functions. Thus, if one set
of base functions satisfies a linear equation like equation (1) or (2), so does another set
of base functions. Therefore, aij and bij should also satisfy the following equations which
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are derived by using the base function 1 among the set of base functions
1, sin x, cos x, sin 2x, . . . , sin (Nx/2), cos (Nx/2)

s
N

j=1

aij =0, s
N

j=1

bij =0. (21, 22)

From equations (21) and (22), aii and bii can be easily calculated from aij (i$ j) and bij (i$ j).
The weighting coefficient of the third and fourth order derivatives can be computed easily
from aij and bij by

cij = s
N

k=1

aikbkj , dij = s
N

k=1

bikbkj , (23, 24)

where cij and dij are the weighting coefficients of the third and fourth order derivatives,
respectively.

3.      

The non-dimensional equation for a thin uniform thickness, rectangular plate may be
written as

14W/1X4 +2l2 14W/1X2 1Y2 + l4 14W/1Y4 =V2W (25)

where W is the dimensionless mode function; V is the dimensionless frequency; X= x/a,
Y= y/b are dimensionless co-ordinates, a and b are the lengths of the plate edges;
l= a/b is the aspect ratio. Further, V=va2zr/D, where v is the dimensional circular
frequency, D=Eh3/[12(1− n2)] is the flexural rigidity, E, n, r and h are Young’s modulus,
Poisson ratio, density of the plate material, and the plate thickness, respectively. Equation
(25) is a fourth order partial differential equation with respect to X and Y. Thus, it requires
two boundary conditions at each edge. The following three types of boundary conditions
are considered.

3.1. Simply–supported edge (SS)

W=0,
12W
1X2 =0, at X=0 or X=1, (26a)

and W=0,
12W
1Y2 =0, at Y=0 or Y=1. (26b)

3.2. Clamped edge (C)

W=0,
1W
1X

=0, at X=0 or X=1, (27a)

and W=0,
1W
1Y

=0, at Y=0 or Y=1. (27b)

3.3. Free edge (F)

12W
1X2 + nl2 12W

1Y2 =0,
13W
1X3 + (2− n)l2 13W

1X 1Y2 =0, at X=0 or 1 (28a)

and l2 12W
1Y2 + n

12W
1X2 =0, l2 13W

1Y3 + (2− n)
13W

1X2 1Y
=0, at Y=0 or 1 (28b)
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and 12W/1X 1Y=0, (28c)

at the corner of two adjacent free edges.
By applying the HDQ or GDQ method, equation (25) can be discretized as

s
N

k=1

c(4)
i,k Wk, j +2l2 s

N

k1=1

s
M

k2=1

c(2)
i,k1c̄ (2)

j,k2Wk1,k2 + l4 s
M

k=1

c̄ (4)
j,k Wi,k =V2Wi, j , (29)

where N, M are the number of grid points in the X and Y directions, c(n)
i,k , c̄ (m)

j,k are the HDQ
or GDQ weighting coefficients related to the derivatives 1nW/1Xn, 1mW/1Ym, respectively.
Similarly, the derivatives in the boundary conditions (26), (27) and (28) can be discetized
by the HDQ or GDQ method. Substituting the discretized boundary conditions into
equation (29) gives the following eigenvalue equation system

[A]{W}=V2{W}. (30)

Obviously, the frequencies V can be given from the eigenvalue of matrix [A].
For the rectangular plate, the co-ordinates of grid points are chosen as

Xi =$1−cos 0 i−1
N−1

p1%>2, i=1, 2, . . . , N, (31)

Yj =$1−cos 0 j−1
M−1

p1%>2, j=1, 2, . . . , M. (32)

The free vibration analysis of rectangular plates has been studied by many researchers.
There is a variety of publications available [9–12]. Among those, the work of Leissa [12]
is most complete in that it presents the frequency data of all twenty-one plate
configurations for the first nine modes and for a wide range of aspect ratios. In this study,
the developed HDQ method and the previously developed GDQ method are applied to
the free vibration analysis of rectangular plates with the above mentioned three types of
boundary conditions and their results are compared to Leissa’s data [12]. The numerical
results are presented for aspect ratios of l= a/b=2/5, 2/3, 1, 3/2, 5/2. Table 1 shows the
natural frequencies of the first five modes for a plate with all four edges simply–supported
(SS–SS–SS–SS). The HDQ, GDQ and Leissa’s results [12] are included in the table. The
HDQ results are obtained by the mesh size of 9×9 while the GDQ results are given from
the mesh size of 15×15. For the SS–SS–SS–SS boundary condition, Leissa’s results are
the exact solutions. It can be observed that for this case, the HDQ results are almost
identical to the exact solutions even though very few grid points are used. Actually, the
HDQ results using the mesh size of 9×9 have better accuracy than the GDQ results using
the mesh size of 15×15. It is indicated that the SS–SS–SS–SS plate configuration has
periodic behaviors. Thus, for this case, the HDQ results are much more accurate than the
GDQ results. Table 2 lists the natural frequencies of the first five modes for a plate with
all four edges clamped (C–C–C–C). The HDQ, GDQ and Leissa’s results [12] are included
in the table for comparison. For this case, the HDQ and GDQ results are given from the
mesh size of 15×15. It can be seen that, by comparison with the Leissa data [12], the HDQ
results are slightly better than the GDQ results for the C–C–C–C boundary conditions.
Table 3 displays the natural frequencies of the first five modes for a plate configuration
of C–F–SS–F. The HDQ, GDQ and Leissa’s results [12] are shown in the table for
comparison. The HDQ and GDQ results are obtained by using a mesh size of 15×15.
It can be observed from Table 3 that for the fundamental frequency, the HDQ results are
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T 1

Natural frequencies of a rectangular plate (SS–SS–SS–SS)

l= a/b Method V1 V2 V3 V4 V5

2/5 Leissa [12] 11·4487 16·1862 24·0818 35·1358 41·0576
HDQ (9×9) 11·4487 16·1862 24·0818 35·1358 41·0575

GDQ (15×15) 11·4487 16·1862 24·0817 35·1526 41·0575
2/3 Leissa [12] 14·2561 27·4156 43·8649 49·3480 57·0244

HDQ (9×9) 14·2561 27·4156 43·8649 49·3481 57·0244
GDQ (15×15) 14·2561 27·4156 43·8649 49·3475 57·0244

1 Leissa [12] 19·7392 49·3480 49·3480 78·9568 98·6960
HDQ (9×9) 19·7392 49·3480 49·3480 78·9568 98·6960

GDQ (15×15) 19·7414 49·3480 49·3481 78·9568 98·6947
3/2 Leissa [12] 32·0762 61·6850 98·6960 111·0330 128·3049

HDQ (9×9) 32·0762 61·6850 98·6960 111·0331 128·3049
GDQ (15×15) 32·0762 61·6850 98·6960 111·0318 128·3048

5/2 Leissa [12] 71·5564 101·1634 150·5115 219·5987 256·6097
HDQ (9×9) 71·5564 101·1634 150·5115 219·5986 256·6097

GDQ (15×15) 71·5564 101·1634 150·5106 219·7034 256·6096

more accurate than the GDQ results. However, for other frequencies, the HDQ results are
less accurate than the GDQ results.

4. 

The explicit formulations for computing the weighting coefficients in the harmonic
differential quadrature (HDQ) have been developed. In HDQ, the solution of a differential
equation is approximated by a Fourier series expansion. For the free vibration analysis
of rectangular plates with all edges simply-supported (SS–SS–SS–SS), it was found that
the HDQ method is very efficient and its results are much more accurate than the GDQ
results. For the C–C–C–C plate configuration, the HDQ results are slightly better than
the GDQ results. For the plate configuration with at least one free edge, it was found that

T 2

Natural frequencies of a rectangular plate (C–C–C–C)

l= a/b Method V1 V2 V3 V4 V5

2/5 Leissa [12] 23·648 27·817 35·446 46·702 61·554
HDQ (15×15) 23·644 27·810 35·422 46·687 61·520
GDQ (15×15) 23·644 27·807 35·418 46·681 61·592

2/3 Leissa [12] 27·010 41·716 66·143 66·552 79·850
HDQ (15×15) 27·006 41·709 66·132 66·528 79·823
GDQ (15×15) 27·005 41·704 66·125 66·522 79·806

1 Leissa [12] 35·992 73·413 73·413 108·270 131·640
HDQ (15×15) 35·986 73·402 73·402 108·241 131·591
GDQ (15×15) 35·986 73·394 73·394 108·217 131·580

3/2 Leissa [12] 60·772 93·860 148·820 149·740 179·660
HDQ (15×15) 60·763 93·844 148·796 149·688 179·601
GDQ (15×15) 60·761 93·834 148·780 149·674 179·564

5/2 Leissa [12] 147·800 173·850 221·540 291·890 384·710
HDQ (15×15) 147·778 173·812 221·385 291·794 384·437
GDQ (15×15) 147·772 173·796 221·363 291·756 384·951
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T 3
Natural frequencies of a rectangular plate (C–F–SS–F) (n=0·3)

l= a/b Method V1 V2 V3 V4 V5

2/5 Leissa [12] 15·382 16·371 19·656 25·549 34·507
HDQ (15×15) 15·367 16·530 19·804 26·048 34·740
GDQ (15×15) 15·347 16·357 19·711 25·647 34·514

2/3 Leissa [12] 15·340 17·949 26·734 43·190 49·840
HDQ (15×15) 15·342 18·333 27·043 44·118 49·785
GDQ (15×15) 15·319 18·018 26·908 43·383 49·637

1 Leissa [12] 15·285 20·673 39·775 49·730 56·617
HDQ (15×15) 15·252 21·373 40·092 49·615 57·253
GDQ (15×15) 15·232 20·693 39·882 49·500 56·393

3/2 Leissa [12] 15·217 25·711 49·550 64·012 68·126
HDQ (15×15) 15·180 26·865 49·382 65·384 68·573
GDQ (15×15) 15·154 25·750 49·269 63·802 68·208

5/2 Leissa [12] 15·128 37·294 49·226 83·325 103·140
HDQ (15×15) 15·119 39·218 49·051 85·889 102·426
GDQ (15×15) 15·055 37·365 48·896 83·177 102·687

the HDQ method provides more accurate fundamental frequency than the GDQ method.
However, for other frequencies, the GDQ results are more accurate than the HDQ results.
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